Time-series averaging using constrained dynamic time warping with tolerance

Marion Morel 1, 2, 3, * Catherine Achard 1 Richard Kulpa 2, 3 Séverine Dubuisson 1
* Auteur correspondant
3 MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation
UR2 - Université de Rennes 2, Inria Rennes – Bretagne Atlantique , IRISA_D6 - MEDIA ET INTERACTIONS
Abstract : In this paper, we propose an innovative averaging of a set of time-series based on the Dynamic Time Warping (DTW). The DTW is widely used in data mining since it provides not only a similarity measure, but also a temporal alignment of time-series. However, its use is often restricted to the case of a pair of signals. In this paper, we propose to extend its application to a set of signals by providing an average time-series that opens a wide range of applications in data mining process. Starting with an existing well-established method called DBA (for DTW Barycenter Averaging), this paper points out its limitations and suggests an alternative based on a Constrained Dynamic Time Warping. Secondly, an innovative tolerance is added to take into account the admissible variability around the average signal. This new modeling of time-series is evaluated on a classification task applied on several datasets and results show that it outperforms state of the art methods.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2018, 74, pp.77-89. 〈10.1016/j.patcog.2017.08.015〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01630288
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 7 novembre 2017 - 14:14:48
Dernière modification le : vendredi 31 août 2018 - 09:13:02
Document(s) archivé(s) le : jeudi 8 février 2018 - 13:44:58

Fichier

Morel_2018_Time-series.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Marion Morel, Catherine Achard, Richard Kulpa, Séverine Dubuisson. Time-series averaging using constrained dynamic time warping with tolerance. Pattern Recognition, Elsevier, 2018, 74, pp.77-89. 〈10.1016/j.patcog.2017.08.015〉. 〈hal-01630288〉

Partager

Métriques

Consultations de la notice

704

Téléchargements de fichiers

182