Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field

Philippe Chartier 1, 2 Nicolas Crouseilles 2, 1 Mohammed Lemou 1, 3, 2 Florian Méhats 2, 1 Xiaofei Zhao 2
2 MINGUS - Multi-scale numerical geometric schemes
IRMAR - Institut de Recherche Mathématique de Rennes, ENS Rennes - École normale supérieure - Rennes, Inria Rennes – Bretagne Atlantique
Abstract : In this paper, we consider the numerical solution of highly-oscillatory Vlasov and Vlasov-Poisson equations with non-homogeneous magnetic field. Designed in the spirit of recent uniformly accurate methods, our schemes remain insensitive to the stiffness of the problem, in terms of both accuracy and computational cost. The specific difficulty (and the resulting novelty of our approach) stems from the presence of a non-periodic oscillation, which necessitates a careful ad-hoc reformulation of the equations. Our results are illustrated numerically on several examples.
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01703477
Contributeur : Xiaofei Zhao <>
Soumis le : mercredi 7 février 2018 - 22:18:33
Dernière modification le : jeudi 15 novembre 2018 - 11:59:02
Document(s) archivé(s) le : vendredi 4 mai 2018 - 00:02:35

Fichiers

vpb.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01703477, version 1

Citation

Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou, Florian Méhats, Xiaofei Zhao. Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field. 2018. 〈hal-01703477〉

Partager

Métriques

Consultations de la notice

275

Téléchargements de fichiers

55